

EVOLUÇÃO DO COMPUTADOR E DA INFORMÁTICA

Uma abordagem cronológica (tentativa)

História dos computadores

A02 – Os primeiros Auxiliares de Cálculo

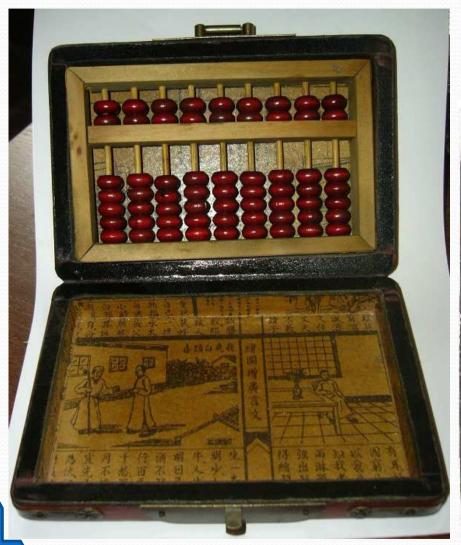
Com a evolução...

Será necessário um computador?

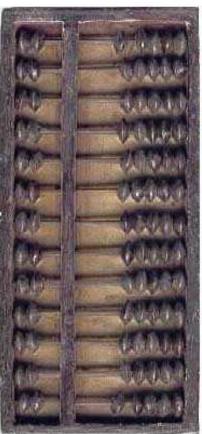
Que necessidades?

Sedentarização

Contagem (Contar o quê? Porquê?) Património

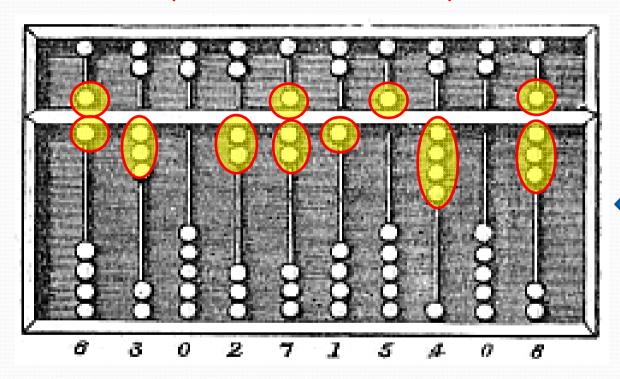


O Homem inventa os primeiros auxiliares de cálculo para


Operações elementares:

i. ÁBACO >5.500 ano/

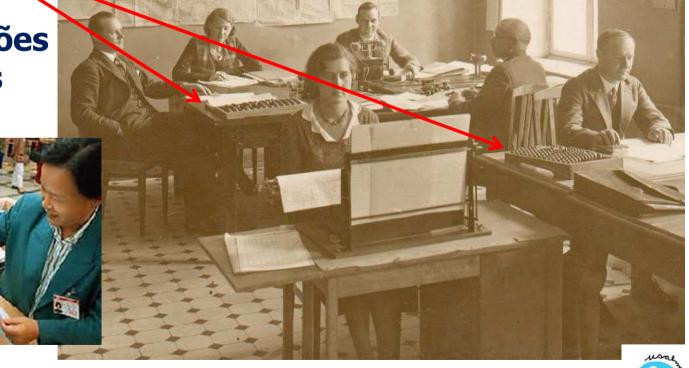
Mesopotâmia e China



i. ÁBACO

(SISTEMA DE BASE 10)

CÉU

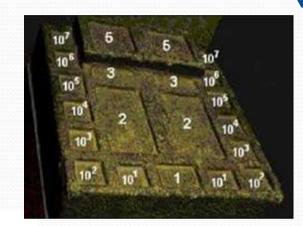


Ainda em uso no séc. XX

para operações elementares

Calculadora vs Ábaco - Tóquio, 1946

Tipo de problema	Nome	1ª Ronda	2ª Ronda	3ª Ronda	Pontuação
Adição: 50 números com 3 a 6 dígitos	Matsuzaki	1m. 14.9s (Victoria)	1m 16s (Victoria)		1
	Wood	2m 0.2s (Derrota)	1m 58s (Derrota)		
Subtracção: 5 problemas com diminuendos e subtraendos contendo entre 6 a 8 dígitos cada	Matsuzaki	1m .4s (Victoria)	1m .8 (Indecisão)	1m(Victoria)	1
	Wood	1m 30s (Derrota)	1m 35s (Indecisão)	1m 22s (Derrota)	
Multiplicação : 5 problemas cada um contendo entre 5 a 12 dígitos no multiplicador e multiplicando	Matsuzaki	1m 44.6s (Derrota)	1m 19s (Victoria)	2m 14.4s (Derrota)	
	Wood	2m 22s (Derrota)	1m 20s (Derrota)	1m 53.6s (Victoria)	1
Divisão : 5 problemas cada um contendo entre 5 a 12 dígitos no divisor e dividendo	Matsuzaki	1m 36.6s (Victoria)	1m 23s (Derrota)	1m 21s (Victoria)	1
	Wood	1m 48s (Derrota)	1m 19s (Victoria)	1m 25s (Derrota)	
Problemas compostos:	Matsuzaki	1m 21s (Victoria)			1
	Wood	1m 26s (Derrota)			
Total:	Matsuzaki				4
Total.	Wood				1



ii. QUIPU e YUPANA (América do Sul)

SOMAR:

- 1	***			
DM	UM	С	D	U
00	00	00	00	00
00	00	0%	00	00
000	00	00	0	**
少	4	今	4	4
DM	UM	С	D	U
00	00	0.0	00	00
00	00	00	00	00
000			••	••

	***			***
DM	UM	С	D	U
00	00	00	00	00
00	00	00	00	00
000	***	***	***	***
4	4	4	4	4
DM	UM	С	D	U
00	0 .	00	00	00
%	••		•••	00
000	**	***	***	000

iia. QUIPU

Quipu do Perú, encontrado no Equador.

Data de 300 a.C.

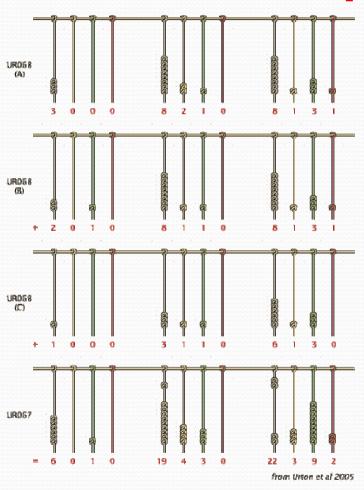
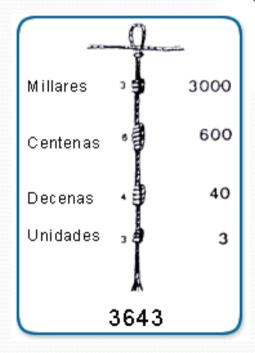
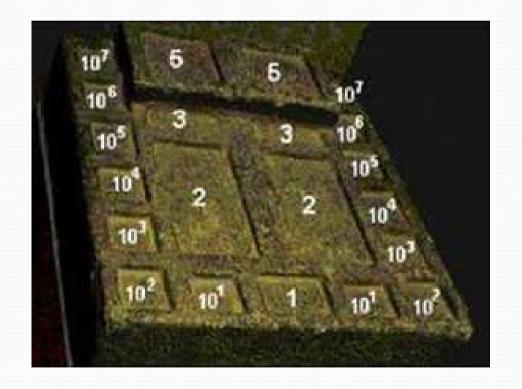

Crê-se que encerrava em si um código de escrita para enviar mensagens.

Foto da Cruz Vermelha Internacional - Lima.



iia. QUIPU (numérico)

Nós indicam valores

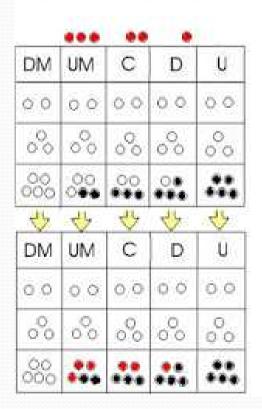


ii.b. YUPANA

Calcular os impostos dos agricultores

iib. YUPANA

Modernamente...



iib. YUPANA

SOMAR:

2345 + 3210 + 4216 = 9771

	***	**		-84
DM	UM	С	D	Ü
00	00	00	00	00
00	00	00	00	00
000	***	***	***	***
4	45	4	4	4
	The second second			
DM	UM	С	D	U
DM	UM o •	c °°	D	00
-1.000	UM o •	C °°	(1666) (1666)	383

Acontecimentos relevantes

Século I a. C.

Ásia

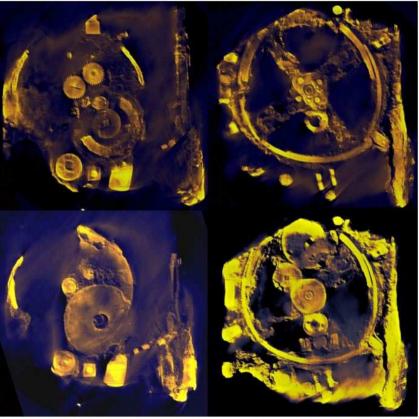
Noroeste da Índia conquistada por Demétrio e Menandro Expansão da Dinastia Chinesa Han (mais de 400 anos)

Europa

Roma conquista a Macedónia Grécia sob domínio romano Guerra civil, em Roma

África

Terceira Guerra Púnica Destruição de Cartago Introdução do dromedário no Saara

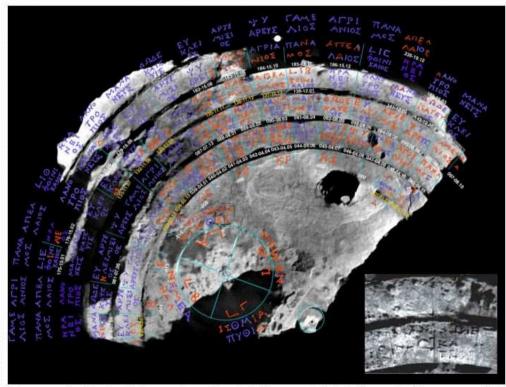


O mecanismo encontrado

ii. ANTIKYTHERA (ANTICÍTERA)

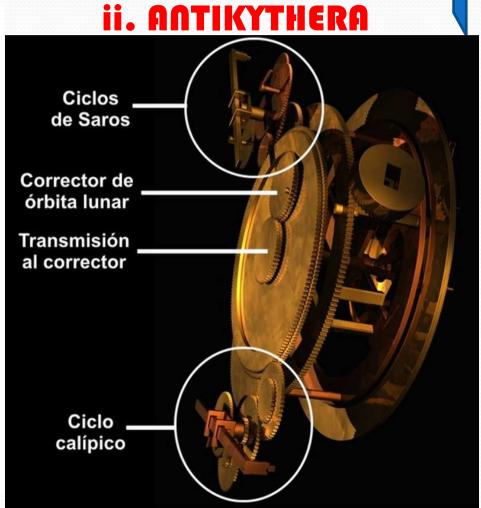
87 a.C. - Grécia

Cuatro "cortes" o "lonchas" del interior del mecanismo de Anticitera (fragmento A) obtenidos mediante tomografía computerizada de rayos X para el AMRP. © 2005 Antikythera Mechanism Research Project.

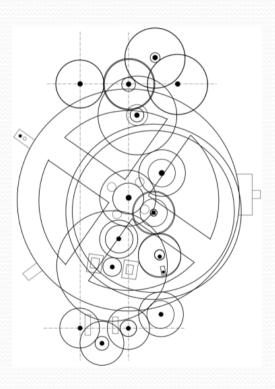


El indicador calipico de fechas para las festividades deportivas, entre ellas las Olimpiadas, identificado en el mecanismo d Anticitera por tomografía de rayos X. Imagen: © 2005 Antikythera Mechanism Research Project.

ii. ANTIKYTHERA (ANTICÍTERA)



Reconstrucción de las inscripciones en el mecanismo de Anticitera, a partir de las imágenes obtenidas por tomografía de rayos X. Imagen: © 2005 Antikythera Mechanism Research Project.


Reconstrucción por ordenador, en vista anterior y posterior, del mecanismo de Anticitera completo en su caja, sin las puertas que lo cerraban y sólo con los textos recuperados.© 2008 Tony Freeth, Images First Ltd.

ii. ANTIKYTHERA (ANTICÍTERA)

Reconstrução do Antikythera em 2007 Museu Arqueológico Nacional de Atenas

Acontecimentos relevantes

Muitos anos depois...

Século XVII d.C.

Ásia

Holandeses em Jacarta e Málaca

Europa

Guerra dos Trinta Anos

Execução de Carlos I

Luis XIV

Fim da União Ibérica

África

Franceses no Senegal

Outros

Fundação de Québec

Descoberta da Nova Zelândia Invasões holandesas do Brasil

PRECURSORES DOS Computadores

- John Napier (1614)
- William Oughtred (1622)
- Wilhelm Schickhard (1623)
- Blaise Pascal (1642)
- Gottfried Liebnitz (1673)

(Edimburgo) foi um matemático, físico, astrónomo, astrólogo e teólogo escocês.

Logaritmo Neperiano de base 10

$$x = log_{10}(y) < == > 10^{x} = y$$

i. é, a que número é necessário elevar 10 para obter y?

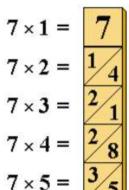
Várias Tabelas

John Napier (*Neper*) (1550-1617)

Logaritmos Ossos de Napier

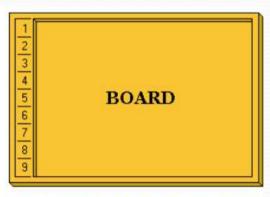
Um conjunto do século 18 dos Ossos de Napier

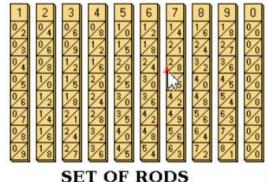
John Napier (1550-1617) - Ossos de Napier

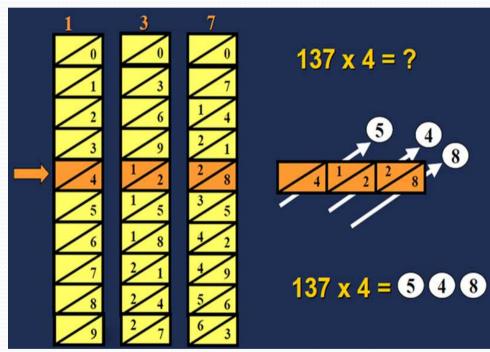


John Napier (1550-1617) - Ossos de Napier

Ossos de Napier

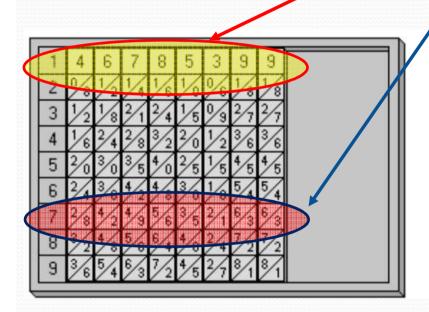

$$7 \times 5 = 3$$

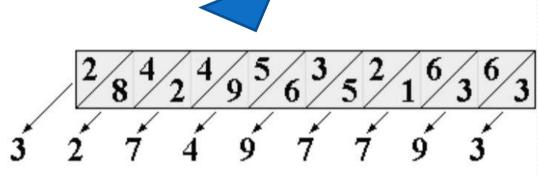

$$7 \times 6 = 4$$


$$7 \times 7 = 4$$

$$7 \times 8 = 5$$

$$7 \times 9 = 6$$

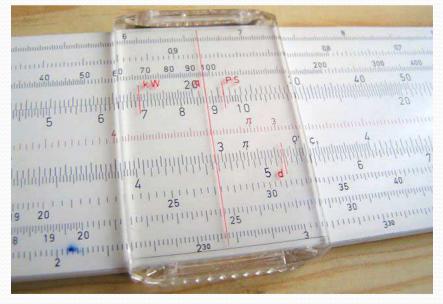




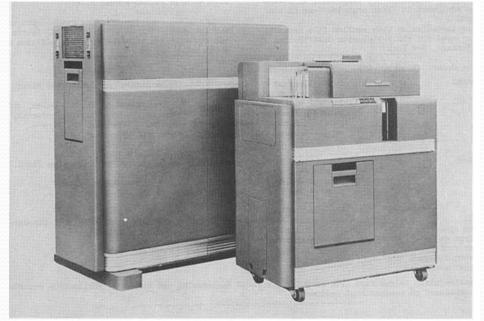
46 785 399 x 7 = 327 497 793



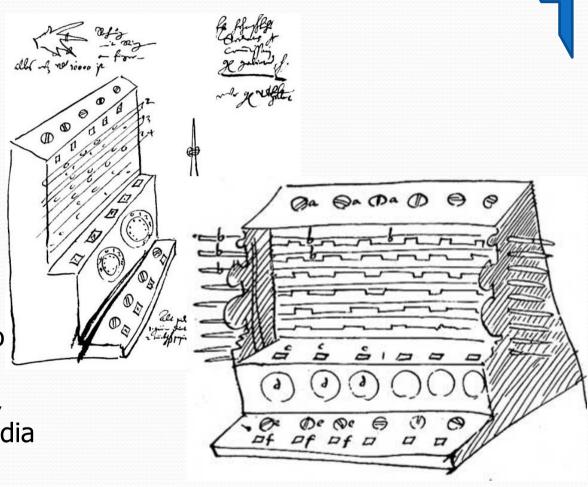
John Napier (1550-1617) - Ossos de Napier

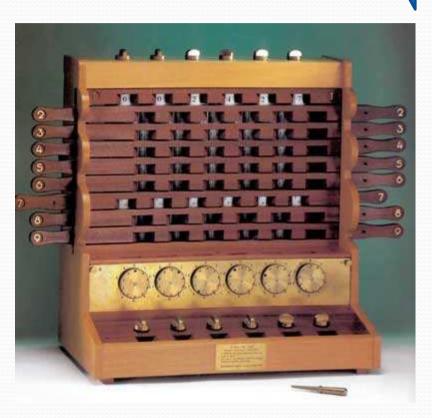


William Oughtred (1570-1660) - Réguas de Cálculo

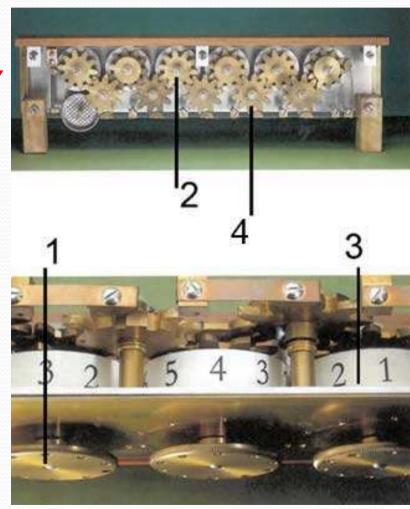


A IBM 604 Electronic Calculating
Punch em 1951 anunciava ter a
capacidade de produzir o trabalho
de 150 engenheiros com Réguas
de Cálculo!




Máquina que adicionava, subtraía, multiplicava e dividia automaticamente

Wilhelm Schickard (1592-1635) - Calculating Clock


Schickard (O primeiro a construir uma máquina de calcular mecânica)

Mecanismo para Adicionar

Constituído por 6 Eixos Básicos (em linha)

- 1) Em cada eixo é montado um disco com 10 entradas, e (3)
- Uma roda com 10 dentes sobre a qual é montada uma roda com 1 dente (para o transporte);
- 3) Um cilindro com os algarismos e
- 4) Nos outros 5 eixos são montadas rodas de 10 dentes.

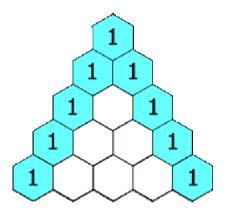
Matemático

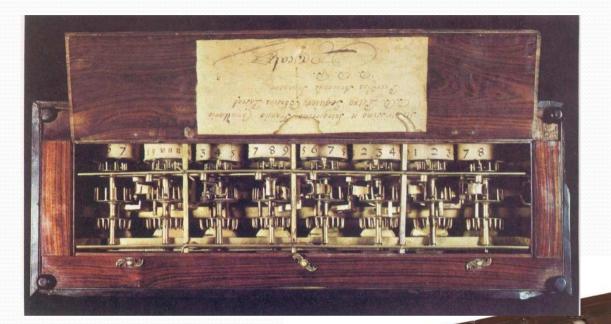
LA PASCALINE

Máquina que adicionava e subtraía. (Multiplica e Divide por repetição).

Primeira máquina a ser produzida em massa: 50 unidades.

Blaise Pascal (1602-1648) — La Pascaline



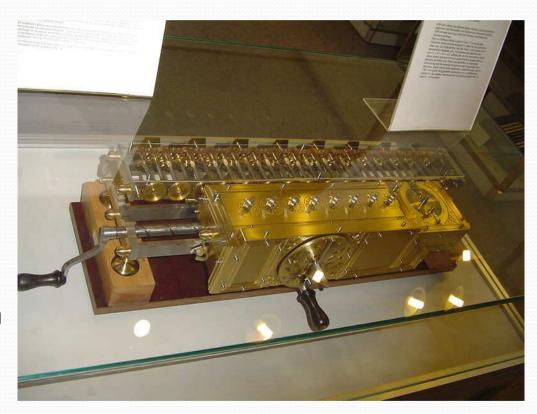

7

O TRIÂNGULO DE PASCAL

o	1	2	3	4	5	6
1	1	1	1	1	1	1
2	1	2	3	4	5	
3	1	3	6	10	15	
4	1	4	10	20		
5	1	5	15			
6	1	6				

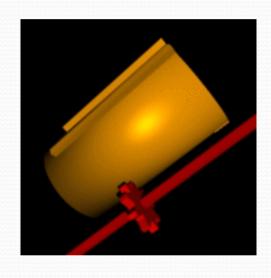
La Pascaline

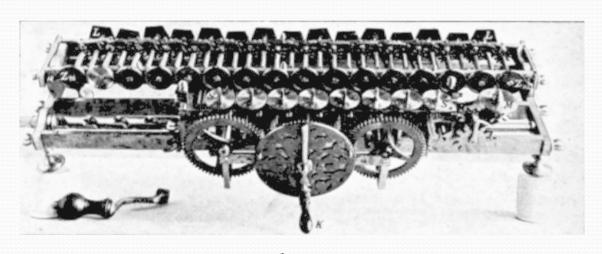
Uma das primeiras calculadoras mecânicas do mundo.



Melhora La Pascaline

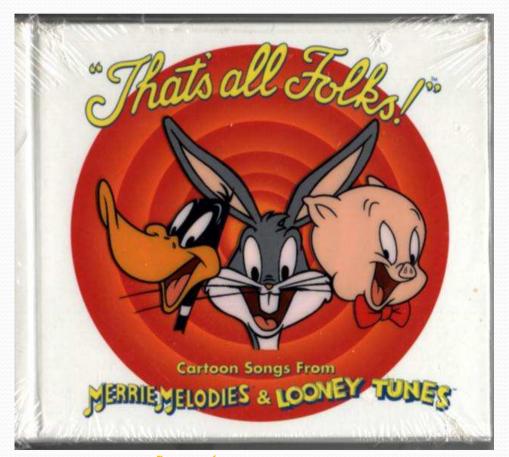
A nova máquina executa as quatro operações aritméticas.


Gottfried Wilhelm von Leibniz (1646-1716)
Calculating Machine - The Step Reckoner



Matemático e Inventor

67 cm


O Cilindro de Leibniz

em que se fundamenta a mecânica da sua Máquina de Cálculo

Calculating Machine - The Step Reckoner (contabilista)

Não perca o próximo episódio (dentro de uma semana)!

